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Abstract In the last years, many computer vision al-

gorithms have been proposed for baggage inspection

using X-ray images. In these approaches, the idea is

to detect automatically threat objects. In baggage in-

spection, however, a single view is insufficient because

there could be occluded parts or intricate projections

that cannot be observed with a single view. In order

to avoid a misinterpretation based on a single view,

we propose the use of single-spectrum multiple X-ray

views. Our approach computes a 3D reconstruction us-

ing Space Carving, a method that reconstructs a 3D ob-

ject from its 2D silhouettes (that have been segmented

using Geodesic Active Contours). The detection is per-

formed by analyzing 3D features (obtained from the

3D reconstruction). Instead of dual-energy, that is typ-

ically used in baggage inspection to analyze the mate-
rial of the reconstructed objects, we propose simply to

use a single-spectrum X-ray system for the detection

of threat objects that can be recognized by analyzing

the shape, such as handguns. The approach has been

successfully tested on X-ray images of travel-bags that

contain handguns. In the evaluation of our method, we

have used sequences of X-ray images for the 3D recon-

struction of objects inside travel-bags, where each se-

quence consists of 90 X-ray images, we obtained 0.97

in both recall and precision. We strongly believe that it

is possible to design an automated aid for the human

inspection task using these computer vision algorithms.
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1 Introduction

In recent years, X-ray screening systems have been used

to safeguard environments in which access control is of

paramount importance [1]. Security checkpoints have

been placed at the entrances to many public places such

as airports, government buildings, stadiums and large

Fig. 1: Baggage inspection and typical problems in recog-
nition of a gun: a) occlusion, b) self-occlusion, c) noise, d)
wrong acquisition, e) variability in different poses.

mailto:vladimir.riffo@uda.cl


2 Vladimir Riffo1 et al.

event venues to detect (e.g., to detect handguns and

explosives) [2] as shown in Fig. 1. However, inspection

is a complex task because threat items are very difficult

to detect when placed in closely packed bags, occluded

by other objects, or rotated, presenting an unrecogniz-

able view [3]. In baggage inspection, a single view of

a test object is insufficient because there could be oc-

cluded parts or intricate projections that cannot be ob-

served with a single view. It is well known, that mul-

tiple view X-ray inspection leads to a higher detection

performance of prohibited items in difficult conditions

[4]. For this reason, multiple view analysis is a power-

ful tool that can be used in X-ray testing, especially in

the inspection of complex objects in cases where cer-

tain items are very difficult to recognize using a single

viewpoint.

In our work, we propose to use single-spectrum mul-

tiple X-ray views in order to avoid a misinterpretation

based on a single view. After multiple views are ac-

quired, our approach computes a 3D reconstruction of

the objects that are present inside of the test object.

For this end, we use a reconstruction approach based on

Space Carving [5, 6], a method that reconstructs a 3D

object from its 2D silhouettes. The 2D segmentation in

our approach has been performed using Geodesic Active

Contours [7]. The detection is performed by analyzing

3D features obtained from the 3D reconstruction. In-

stead of dual-energy, that is typically used in baggage

inspection to analyze the material of the reconstructed

objects, we propose simply to use a single-spectrum X-

ray system for the detection of threat objects that can

be recognized by analyzing the shape, such as hand-

guns. The approach has been successfully tested on X-

ray images that contain handguns. It is worth men-

tioning that our method can only distinguish textures

and shapes (and not materials). In our experiments,

we did not test the proposed method on fake (plastic)

handguns. Probably, our algorithm could detect these

fake objects as threat object. In this sense, an algo-

rithm based on dual-energy could achieve more accu-

rate results, because it can discriminate plastic materi-

als, however, in order to ensure the security, we believe

that a human inspector would like to double-check ev-

erything that seems like a threat object independently

of its material.

This paper attempts to make a contribution to the

field of object recognition in X-ray testing by evaluat-

ing an approach based on 3D reconstruction of single-

spectrum X-ray images. We strongly believe that it is

possible to design an automated aid for the human in-

spection task using these kind of computer vision algo-

rithms. Thus, human operators could achieve a better

performance when taking into account potential threat

objects detected by a computer vision algorithm [8].

The rest of the paper is organized as follows: In Sec-

tion 2 a literature review is presented. In Section 3, the

computer vision methods used in our experiments are

briefly explained. In Section 4, the experimental results

are presented. Section 5 concludes the paper.

2 State of the Art

Baggage inspection using X-ray screening is a prior-

ity task that reduces the risk of crime, terrorist at-

tacks and propagation of pests and diseases [1]. Secu-

rity and safety screening with X-ray scanners has be-

come an important process in public spaces and at bor-

der checkpoints [2]. However, inspection is a complex

task because threat items are very difficult to detect

when placed in closely packed bags, occluded by other

objects, or rotated, thus presenting an unrecognizable

view. Manual detection of threat items by human in-

spectors is extremely demanding [3]. It is tedious be-

cause very few bags actually contain threat items, and

it is stressful because the work of identifying a wide

range of objects, shapes and substances (metals, or-

ganic and inorganic) takes a great deal of concentra-

tion. In addition, human inspectors receive only min-

imal technological support. Furthermore, during rush

hour, they only have a few seconds to decide whether

a bag contains any threat item or not [9]. Since each

operator must screen many bags, the likelihood of hu-

man error becomes considerable over a long period of

time even with intensive training. The literature sug-

gests that detection performance is only about 80–90%

[10]. In baggage inspection, automated X-ray testing

remains an open question due to: i) loss of generality,

which means that approaches developed for one task

may not transfer well to another; ii) deficient detec-

tion accuracy, which means that there is a fundamental

tradeoff between false alarms and missed detections; iii)

limited robustness given that requirements for the use

of a method are often met for simple structures only;

and iv) low adaptiveness in that it may be very diffi-

cult to accommodate an automated system to design

modifications of different specimens [11].

There are some contributions in computer vision for

X-ray testing such as applications on inspection of cast-

ings, welds, food, cargos and baggage screening [12]. For

this work, it is very interesting to review the advances in

baggage screening that have taken place over the course

of this decade. They can be summarized as follows:

some approaches attempt to recognize objects using a

single view of X-ray images of single-spectrum (e.g.,
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the adapted implicit shape model based on visual code-

books [13], adaptive sparse representations [14], models

based on logarithmic X-ray images [15, 16]) and dual-

energy X-ray images (e.g., Gabor texture features [17],

bag of words based [18–20] and pseudo-color, texture,

edge and shape features [21, 22]). More complex ap-

proaches that deal with multiple X-ray images have

been developed as well. For the recognition of regular

objects from X-ray images of single-spectrum, methods

like data association [23, 24] and active vision [25, 26],

where a second-best view is estimated, have been ex-

plored. In the case of dual-energy imaging [27, 28], vi-

sual vocabularies and SVM classifiers have been used,

as shown in [29].

In recent years, models based on Deep Learning have

been successfully used in image and video recognition

[30, 31]. The key idea is to replace handcrafted fea-

tures with features that are learned efficiently using a

hierarchical feature extraction approach. There are sev-

eral deep architectures such as deep neural networks,

convolutional neural networks, energy based models,

Boltzmann machines, deep belief networks, deep resid-

ual learning among others [31, 32]. Convolutional neural

networks (CNN) has been used in recognition of threat

objects in X-ray images (see, for example, in X-ray im-

ages of single-spectrum [11] and in dual-energy images

[33–35]).

3D object recognition from 2D images is a very com-

plex task in computer vision in general, not only with

X-ray images but also with conventional photographic

images, given the infinite number of viewpoints, dif-

ferent acquisition conditions, and objects that are de-

formable, occluded or embedded in clutter [36]. In cer-
tain cases, automated recognition is possible through

the use of approaches focused on obtaining highly dis-

criminative and local invariant features related to light-

ing conditions and local geometric constraints (see, for

example, [37] for a good review and evaluation of de-

scriptors including the well-known SIFT [38] and SURF

[39] features) or texture features (see for example [40]).

A test object can be recognized by matching its in-

variant features to the features of a model. Over the

past decade, many approaches have been proposed in

order to solve the problem of 3D object recognition.

Certain approaches focus on learning new features from

a set of representative images (see, for example, visual

vocabularies [41], implicit shape models [42], mid-level

features [43], sparse representations [44], and hierarchi-

cal kernel descriptors [45]). For instance, Fisher Vec-

tors [46] and Vector of Locally Aggregated Descriptors

(VLAD) [47] on SIFT features has been used success-

fully in recognition problems. In addition, sparse rep-

resentation has been widely used in computer vision

[48, 49]. In many computer vision applications, under

the assumption that natural images can be represented

using sparse decomposition, state of the art results have

been significantly improved. However, these methods

may fail when the learned features cannot provide a

good representation of viewpoints that have not been

considered in the representative images. Additionally,

some approaches include multiple view models (see, for

example, an interconnection of single-view codebooks

across multiple views [50], a learned dense multiple view

representation by pose estimation and synthesis [51], a

model learned iteratively from an initial set of matches

[52], a model learned by collecting viewpoint invari-

ant parts [53], 3D representations using synthetic 3D

models [54], and a tracking-by-detection approach [55]).

These methods may fail, however, when objects have

large intra-class variation.

Progress also has been made in the area of computed

tomography (CT). For example, in order to improve the

quality of CT images, metal artifact reduction and de-

noising [56] techniques were suggested. Many methods

based on 3D features for 3D object recognition have

been developed [57]. See for example, RIFT and SIFT

descriptors [58], 3D Visual Cortex Modeling 3D Zernike

descriptors and histogram of shape index [59]. There are

contributions using known recognition techniques (see,

for example, bag of words [60] and random forest [61])

as well.

In order to address the problem of 3D recognition

from 2D images, 3D image acquisition and reconstruc-

tion techniques (3D scanners) have been developed along

with approaches for reconstructing those images by pro-

cessing multiple views of a single scene. This family of

approaches uses 3D data (points, meshes or CAD mod-

els) for 3D object category classification. In such cases,

the reconstructed 3D object serves as a query and is

matched against the shape of a collection of 3D objects

[62]. Full reviews of the different approaches that com-

prise the state of the art can be consulted in [63–65].

Following a practical paradigm, the results of bench-

marks that evaluate the effectiveness of the existing

methods in different contexts also are available (e.g.,

SHREC, Shape Retrieval Contest [66]). In these bench-

marks, several detectors and descriptors were evaluated

with promising results (e.g., Harris 3D [67], Mesh-HoG

[68], Scale Invariant Spin Image [69], Center-Symmetric

Local Binary Pattern (CSLBP) [70], 3D Shape Context

(3DSC) [71], Signature of Histograms of OrienTations

(SHOT) [72], Unique Shape Context (USC) [73] and

Fast Point Feature Histogram (FPFH) [74]).

As we can see, the progress in automated baggage in-

spection is modest and very limited compared to what is

needed because X-ray screening systems are still being
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Fig. 2: Block diagram of the proposed method.

manipulated by human inspectors. Automated recog-

nition is far from perfect given that the appearance of

the object of interest can become extremely difficult to

comprehend due to problems of (self-) occlusion, noise,

acquisition and clutter, among others (as illustrated in

Fig. 1).

3 Proposed Method

In this Section, we present the proposed method follow-

ing Fig. 2. The block diagram corresponds to a pattern

recognition schema: i) In training stage, we have train-

ing images that are processed in order to build a train-

ing database, in this case a set of features that char-

acterize the target object (handguns) using descriptors

extracted from the 3D reconstructed object. ii) In test-

ing stage, we perform the 3D reconstruction of objects

from the testing images in order to extract the same

3D descriptors used in training stage. The detection is

performed by matching the testing descriptors with the

training descriptors.

3.1 Training

In this Section, we describe the Training Stage as illus-

trated in Fig. 2.

3.1.1 Image Acquisition

In order to acquire representative single-spectrum X-

ray images of a target object in different poses, it is

Fig. 3: Acquisition system of X-ray images for characteri-
zation of target objects (see acquired X-ray images in Fig.
4).

necessary to implement an acquisition system that can

acquire X-ray images from different points of view, as

shown in Fig. 3 for a handgun. The object should be

located inside a sphere of expanded polystyrene (EPS).

We used a sphere of EPS due to its low X-ray absorption

coefficient.

The proposed system allows users to acquire images

of an object in many poses by modifying the rotation

angles; α, β and γ, associated with each axis, X, Y

and Z of the sphere, respectively. All of the images

of the handgun are shown in Fig. 4-Top for β = 0◦.

The database includes the images acquired in the val-
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Fig. 4: Set of X-ray images of a target object (handgun) ac-
quired using different angles α, and γ for β = 0◦: Top) 2D
X-ray images using setup of Fig. 3. Bottom) 3D reconstruc-
tion using algorithm of Section 3.1.2 (3D reconstructions R4
and R10 are not included in Training database because they
are not sufficiently representative.).

ues of the following angles: α = 0◦, 30◦, · · · , 330◦, γ =

0◦, 30◦, · · · , 330◦, and β = 0◦, 30◦, 60◦, 90◦.

3.1.2 3D Reconstruction

In our work, the 3D reconstruction is performed using

the well-known approach Space Carving [5, 6]. For this

end, we need a geometric model that relates the 3D

coordinates of an object in 3D space (X,Y, Z) to the 2D

coordinates of the object viewed in the image of our X-

ray imaging system (u, v). The model is obtained using

a calibration approach [12]. With this model, we can

obtain all points in 3D space that are projected into a

unique 2D point in the 2D image. Namely, all 3D points

belong to a straight line. In addition, we need a set of

binary 2D images, i.e., foreground and background, of

the object to be reconstructed acquired form different

points of views as illustrated in Fig. 5. In our example,

for each image i, we have a binary image i segmented

from the X-ray image, and parameters i that are used

to define the corresponding model (X,Y, Z) → (u, v)

for position i.

In Space Carving, the key idea is to model a ‘vir-

tual sculpture’ of an array of voxels V , in which for

each view i we remove from our array V those voxels

that produce background pixels in the binary image i.

Thus, we start with a voxel array V in a cube that en-

closes the 3D object to be reconstructed. Space Carving

proceeds to remove iteratively (i.e., ‘carving’) portions

Fig. 5: General overview of the 3D reconstruction based on
Space Carving.

of that volume, matching a set of segmented images,

representing silhouettes, until it converges in the scene

to reconstruct [75]. Using this representation, at each

iteration, the coordinates of the world of each voxel

(X,Y, Z) are transformed into coordinates of the im-

age (u, v), by means of the 3D → 2D model. Finally, it

checks if the pixel (u, v) corresponds to a background

pixel, resulting in a retention or removal of the voxel

from which the pixel was obtained respectively. When

all the iterations are completed, only valid voxels will be

retained [76]. Finally, in a post-processing step, isolated

voxels can be removed using morphological operations.

The geometric model (see Fig. 6) that projects a 3D

point (X,Y, Z) into a 2D pixel (u, v) is given in homo-

geneous coordinates by:

λ

[
u
v
1

]
= Pi

XYZ
1

 . (1)

where, λ is a scale factor and Pi is the projection matrix

of view i. It consists of a 3 × 4 element matrix that

depends on scale factors, and rotation and translation

variables of position i. They can be estimated using a

calibration approach [77].

3.1.3 3D Description

Keypoints of the reconstructed object are extracted us-

ing [78, 79] at locations where invariant features can be

defined. 3D descriptors are local or global characteris-

tics that describe a particular object. These descriptors

allow us the detection or recognition of objects in 3D en-

vironments. Usually, descriptors must have some invari-

ance, such as rotation, scaling, translation, affine trans-

formation, among others. Local descriptors are used

for registration, object recognition and categorization

of local surfaces. For these applications, each descrip-

tor is associated with a point, describing the geometry
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around that point. Global descriptors are highly dimen-

sional representations of object geometry, used for ob-

ject recognition, geometric categorization, and shape

reconstruction [80]. The 3D descriptors that were used

in this work to characterize the objects are the follow-

ing1:

3D Shape Context (3DSC): It is a regional shape de-

scriptor that takes into account 3D shape contexts

and harmonic shape contexts [71].

Signature of Histograms of OrienTations (SHOT): It

is based on a synergy between the design of a repeat-

able local reference frame and the embedding of an

hybrid signature/histogram [72].

Unique Shape Context (USC): It is based on 3DSC

that uses a unique local reference frame to improve

the accuracy [73].

Fast Point Feature Histogram (FPFH): It is a faster

version of PFH, which extracts pose-invariant local

features at a point based on the combination of geo-

metrical relation with its neighbors [74].

3.2 Testing

In this Section, we describe the Testing Stage as illus-

trated in Fig. 2.

3.2.1 Image acquisition

The acquisition of single-spectrum X-ray images in the
testing stage is illustrated in Fig. 6. It consists of X-ray

images taken by rotating the vertical axis. In our case,

we use perspectives between 0◦ and 178◦ by rotating in

2◦ degree, i.e., we acquired 90 views from the testing

object.

3.2.2 Image Segmentation

The 2D segmentation in our approach has been per-

formed using Geodesic Active Contours [7]. We use for

this end the implementation of the function contour

of Matlab2 that computes 7 contours. In our work, we

select the three darkest contours because they could

segment all objects of interest. An example is shown in

Fig. 7.

1 They were taken from the Point Cloud Library (PCL), an
open-source library for 3D computer vision [80].
2 See www.mathworks.com.

3.2.3 3D Reconstruction and Description

The 3D reconstruction is performed following the same

method explained in 3.1.2. In training stage the X-ray

image were acquired from isolated objects (as shown

in Fig. 3), whereas in the testing stage the X-ray im-

ages are taken from whole travel-bags, that means the

objects are not isolated at all. An example of the 3D

reconstruction is illustrated in Fig. 9. In addition, we

extract the same descriptors of the testing stage (see

Section 3.1.3).

3.2.4 Matching

The matching testing is simply performed using Eu-

clidean distance of the descriptors. We look for the

nearest neighbor in the training database. If the mini-

mal Euclidean distance is smaller than a threshold the

descriptors are matched.

3.2.5 Geometric Consistency

In order to increase the robustness of our method, it is

necessary to verify the spatial consistency of the match-

ing pairs. The idea here is to check the correctness of

the reconstructed objects by filtering the potential cor-

responding pairs based on geometric constraints [81].

A pair C is defined as two 3D points: s, a keypoint in

the 3D reconstructed scene (test object), and m, a key-

point in the 3D model of the training database (training

object). Pair ci = (pi,s, pi,m) fulfills the matching condi-

tion of similar descriptors as explained in Section 3.2.4.

In this algorithm, we start with ci as the best matched

pair, and we add a new pair cj if the distance between

the two points in the testing object ‖pi,s−pj,s‖ is simi-

lar to the distance in the training object ‖pi,m− pj,m‖:

| ‖pi,m − pj,m‖ − ‖pi,s − pj,s‖ | < ε. (2)

Thus, we guarantee that the distances of added point

cj to previous point ci in both training and testing ob-

ject are consistent (in our case ε = 3mm). Given a list

of corresponding pairs L = {c1, c2, . . . , cn}, in our ex-

periments n = 3, the grouping procedure for each pair

in the list is as follows: a) use each pair of points as a

set of corresponding pairs, b) for every set, add other

pairs if they satisfy (2), c) repeat for every set, and d)

select the set that has the largest size. An example is

illustrated in Fig. 8. See more details in [81].

3.2.6 Detection

A target object, e.g., a handgun, will be detected if

a large number of its descriptors are matched with a

www.mathworks.com
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Fig. 6: Image acquisition in the testing stage.

Fig. 7: Segmentation: original X-ray image, geodesic contours
and binary image.

Fig. 8: Geometric consistency between testing object (left)
and training object (right). The green and red lines indicate
matched pairs that respectively satisfy and do not satisfy the
geometric constrain. In this case, the pair of the red line is
removed.

training object satisfying the geometric constraints. For

this end, a threshold is used. Some examples are shown

in red in Fig. 9.

4 Experimental Results

In this Section, we show the experiments that we con-

ducted to validate the proposed method.

4.1 Description of the Experiments

In our experiments, we use X-ray images selected from

public GDXray database [82]. GDXray is a public data-

base for X-ray testing with more than 8,000 images for

baggage inspection3.

We use for our experiments two handguns as train-

ing objects. For each one, we captured the X-ray images

as illustrated in Fig. 3 in order to build the Training

Database as shown in Fig. 4. For testing purposes we

use 19 travel-bags that contain 0, 1 or 2 handguns. Some

examples are shown in Fig. 9-Top. The X-ray images

of each travel-bag were captured according to Section

3.2.1, i.e., 90 views from 0◦ and 178◦ were used for 3D

reconstruction. In testing stage, after 3D reconstruc-

tion, we follow the method of Section 3.2: description,

matching, geometric consistency and detection. In our

experiments, we tested the performance of the four 3D

descriptors: 3DSC, SHOT, USC and FPFH (see Section

3.1.3).

3 The X-ray images included in GDXray can be used free of
charge, for research and educational purposes only. Available
at http://dmery.ing.puc.cl/index.php/material/gdxray/.

http://dmery.ing.puc.cl/index.php/material/gdxray/
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Fig. 9: Example of 3D reconstruction of the segmented objects in different travel-bags. In red we show the detected handguns
after the matching and geometric consistency steps.

Fig. 10: False positive.

The performance is given in terms of Recall–Precision

curves, considering all test objects. The variables Recall

(Re) and Precision (Pr) are defined as follows:

Re =
TP

Np
, P r =

TP

TP + FP
, (3)

where, TP is the number of true positives, FP is the

number of false positives and Np is the total number

of target objects to be detected. Ideally, a perfect de-

tection means all existing targets are correctly detected

without any false alarms, i.e., Re = 1 and Pr = 1.

In our experiments, it is worthwhile to mention that

the recognition is a challenging task, because the im-

ages used in training stage were captured from isolated

handguns (in a sphere of EPS) as illustrated in Fig. 3

and explained in Section 3.1.1, whereas the images used

in testing stage were capture from cluttered travel-bags

containing around 18 objects such as cellphones, pen-

cases, knives, keys, screws, bolts, etc. as shown in Fig.

9-Top, and the total number of target objects (hand-

guns) in test database isNp = 18, distributed as follows:

i) five sequences without handguns, ii) ten sequences

with only 1 handgun, and iii) four sequences with 2

handguns.

We repeat the same test experiments by training

with only one of the two handguns following the pro-

tocol leave-one-gun-out. The best performance is sum-

marized in Table 3 for descriptor 3DSC. As we can see,

the performance is very similar.

4.2 Results

Some good results are given in Fig. 9-Bottom, where the

effectiveness of the proposed method is evident. How-

ever, the method is not perfect because there are some

false positives and false negatives (see an Example in

Fig. 10). Table 1 and 2 are plotted in Fig. 11, which

show the performance achieved by our method, when

we modify the threshold value (described by the authors

[71–74]) of four different 3D descriptors: USC, FPFH,

3DSC and SHOT. We select the best operation point

(Re∗, Pr∗) as the intersection of precision-recall-curve

and line Pr = Re as illustrated in Fig. 11. As we can

see, in the evaluation of 19 sequences of travel-bags, we

obtained 0.97 in both Recall (Re∗) and Precision (Pr∗)

for the descriptor 3DSC.

Table 1: Best precision and recall for each descriptor

3D Descriptor Recall (Re∗) Precision (Pr∗)

USC 0.89 0.89

FPFH 0.80 0.80

3DSC 0.97 0.97

SHOT 0.91 0.91
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Table 2: Precision and recall for each descriptor

USC FPFH 3DSC SHOT

Re Pr Re Pr Re Pr Re Pr

1,00 0,13 1,00 0,11 1,00 0,09 1,00 0,08

1,00 0,20 1,00 0,17 1,00 0,15 1,00 0,13

1,00 0,26 1,00 0,20 1,00 0,16 1,00 0,16

1,00 0,35 1,00 0,22 1,00 0,17 1,00 0,16

1,00 0,53 1,00 0,25 1,00 0,19 1,00 0,17

0,94 0,71 1,00 0,28 1,00 0,20 1,00 0,17

0,94 0,81 1,00 0,35 1,00 0,21 1,00 0,18

0,89 0,89 1,00 0,38 1,00 0,22 1,00 0,18

0,89 1,00 0,94 0,46 1,00 0,25 1,00 0,18

0,83 1,00 0,94 0,50 1,00 0,35 1,00 0,19

0,83 1,00 0,83 0,52 1,00 0,50 1,00 0,19

0,83 1,00 0,83 0,60 1,00 0,82 1,00 0,19

0,78 1,00 0,83 0,68 1,00 0,95 1,00 0,20

0,78 1,00 0,78 0,88 0,89 1,00 1,00 0,21

0,67 1,00 0,72 0,87 0,72 1,00 1,00 0,25

0,67 1,00 0,67 0,92 0,67 1,00 1,00 0,38

0,61 1,00 0,61 0,92 0,56 1,00 1,00 0,60

0,56 1,00 0,50 0,90 0,33 1,00 0,89 1,00

0,56 1,00 0,28 1,00 0,22 1,00 0,61 1,00

0,56 1,00 0,11 1,00 0,06 1,00 0,50 1,00

0,56 1,00 0,06 1,00 0,06 1,00 0,28 1,00

Fig. 11: Precision-recall-curve for each descriptor. The best
performance is obtained by descriptor 3DSC.

Table 3: Performance using leave-one-gun-out

Handgun Recall Precision

A 1.00 1.00

B 0.94 0.94

Average 0.97 0.97

4.3 Analysis

In our experiments, we have shown that the proposed

method achieved a very good performance obtaining

0.97 in both recall and precision. The method is robust

against occlusion in cluttered travel-bags (see for ex-

ample the fourth image of Fig. 9). The best descriptor

was 3DSC, however, it was not the faster (see compu-

tational time in Section 4.4). Perhaps, in terms of com-

putational time and performance, descriptor SHOT is

the most acceptable.

4.4 Implementation

Our method was implemented in Matlab. The compu-

tational time for 3D reconstruction for the travel-bags

was in average 148 sec., and the computational time

for future extraction was 2.571, 410, 2.261 and 1.111
sec. for 3DSC, SHOT, USC and FPFH descriptors re-

spectively. All images and code are available on our

webpage4.

5 Conclusions

In this work, we focused on recognition of threat objects

in baggage inspection using a 3D approach from single-

spectrum X-ray images. Our approach computes a 3D

reconstruction using Space Carving, a method that re-

constructs a 3D object from its 2D silhouettes. In our

experiments, the 2D segmentation of the X-ray images

was performed using Geodesic Active Contours. The

detection is performed by analyzing 3D features ob-

tained from the 3D reconstruction. The approach has

been successfully tested on X-ray images of travel-bags

with and without handguns. In the evaluation of 19 se-

quences with 90 X-ray images each, we obtained 0.97

in both precision and recall. We have shown that these

preliminary results are promising, because instead of

dual-energy, that is typically used in baggage inspec-

tion to analyze the material of the reconstructed ob-

jects, we simply used X-ray images of single-spectrum

for the detection of threat objects that can be recog-

nized by analyzing the shape, such as handguns, achiev-

ing a good performance. In addition, we have verified

that by means of the method that we propose here, it

is possible to detect objects, even in disordered bags,

avoiding in this way, the problems of occlusion, typical

of 2D images of X-rays. We strongly believe that it is

possible to design an automated aid for the human in-

spection task using these computer vision algorithms.

4 See http//www.our.webpage (available after publication).

http//www.our.webpage
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As future work, we would like to test our methodol-

ogy with other threat objects such as knives and razor

blades for example.
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